Metabolome-Wide Analysis of Stable Isotope Labeling—Is It Worth the Effort?

نویسندگان

  • Daniel Weindl
  • Andre Wegner
  • Karsten Hiller
چکیده

Stable isotope assisted metabolomics techniques have emerged as a valuable tool in systems biology for metabolic flux analysis and pathway discovery (Duckwall et al., 2013; Chokkathukalam et al., 2014; Niedenführ et al., 2015). Traditionally, stable isotope labeling analyses have been highly targeted, meaning that isotopic enrichment of only a small set of metabolites has been analyzed to deduce metabolic fluxes. However, in recent years, tools for the global non-targeted detection, quantification, and computational analysis of isotopic enrichment have become available In this article, we will discuss whether and how such novel non-targeted stable isotope labeling analyses can be applied for systems-biomedical research. Pathological alterations of cellular processes usually manifest in altered metabolism. Therefore, analysis of metabolism is an ideal entry-point to diagnose or analyze diseases. Metabolic fluxes are the endpoint of cellular regulation and most likely to reflect changes on the genome, transcriptome or proteome level, and hence, are a valuable read-out for biomedical research (Wegner et al., 2015). Since intracellular metabolic fluxes cannot be measured directly, they are probed using stable isotope labeling: An isotopically enriched substrate is applied and the metabolization of this tracer leads to isotopic enrichment in downstream metabolites, depending on the underlying metabolic fluxes (Buescher et al., 2015). These enrichment patterns are analyzed by mass spectrometry (MS) or nuclear magnetic resonance (NMR) and are used to deduce metabolic fluxes (Truong et al., 2014; Young et al., 2014). Because isotopic labeling patterns are a direct consequence of metabolic fluxes, changes in these patterns indicate metabolic flux changes (Sauer, 2006). Consequently, global analysis of labeling patterns would allow for the global detection of metabolic flux changes. Because isotopic enrichment can be deduced solely from mass spectra (Jennings and Matthews, 2005), differential flux analysis based on differences in these isotopic labeling patterns does not require prior compound identification or a model of the metabolic network. This way, a non-targeted stable isotope labeling analysis can also consider unexpected or unknown compounds and reactions, circumventing current limitations of compound identification. Such a data-driven metabolic flux analysis is perfectly suited to pinpoint disease-specific alterations of cellular metabolism as little information on the experimental outcome is required. However, even in cases where there are specific hypotheses in place, a data-driven analysis may identify previously overlooked features. As such, non-targeted stable isotope labeling analysis can function as a hypothesis generator, aiding the design of subsequent experiments. Other than e.g., 13 C metabolic flux …

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MetExtract II: A Software Suite for Stable Isotope-Assisted Untargeted Metabolomics

Stable isotope labeling (SIL) techniques have the potential to enhance different aspects of liquid chromatography-high-resolution mass spectrometry (LC-HRMS)-based untargeted metabolomics methods including metabolite detection, annotation of unknown metabolites, and comparative quantification. In this work, we present MetExtract II, a software toolbox for detection of biologically derived compo...

متن کامل

Bridging the gap between non-targeted stable isotope labeling and metabolic flux analysis

BACKGROUND Metabolism gained increasing interest for the understanding of diseases and to pinpoint therapeutic intervention points. However, classical metabolomics techniques only provide a very static view on metabolism. Metabolic flux analysis methods, on the other hand, are highly targeted and require detailed knowledge on metabolism beforehand. RESULTS We present a novel workflow to analy...

متن کامل

Labeling of Human Serum Albumin with Stable Isotope of Bromine; an in Vitro Study

Background: Possibility to trace-label albumin with isotopes results in information concerning its synthesis, breakdown, and distribution in the intra and extra cellular spaces. The iodination of albumin is a widespread procedure used in scientific studies. Bromine not only is more reactive and less expensive than iodine, but bonds more easily with many elements. Therefore, it could be a suitab...

متن کامل

Metabolome analysis: the potential of in vivo labeling with stable isotopes for metabolite profiling.

Metabolome analysis technologies are still in early development because, unlike genome, transcriptome and proteome analyses, metabolome analysis has to deal with a highly diverse range of biomolecules. Combinations of different analytical platforms are therefore required for comprehensive metabolomic studies. Each of these platforms covers only part of the metabolome. To establish multiparallel...

متن کامل

Protein turnover on the scale of the proteome.

Protein turnover is a neglected dimension in postgenomic studies, defining the dynamics of changes in protein expression and forging a link between transcriptome, proteome and metabolome. Recent advances in postgenomic technologies have led to the development of new proteomic techniques to measure protein turnover on a proteome-wide scale. These methods are driven by stable isotope metabolic la...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2015